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Abstract

We study a model where a manager repeatedly selects one worker from a group of

homogeneous workers to perform a task. We characterize the largest set of parameters

under which an equilibrium achieving efficient worker performance exists. We then

show that this is the set of parameters given which the following manager’s strategy

constitutes an efficient equilibrium: the manager cyclically orders all workers and if

the task is undesirable (resp., desirable), a worker is selected until good (resp., bad)

performance, after which the manager randomizes between reselecting him and moving

to the next worker; the reselection probability is set to be as high as effort incentives

permit. Our findings extend to repeated selection of multiple workers.
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1 Introduction

Worker performance is crucial to organizational success, yet motivating workers remains a

persistent challenge for managers, particularly middle managers in large organizations who

lack the authority or resources to deploy monetary incentives. Managers therefore often need

to rely on other levers. This paper focuses on one such lever: the dynamic allocation of a task.

We study how a manager can structure task assignments among a group of homogeneous

workers over time to improve worker performance.

For concreteness, we begin by considering settings where the task is inherently undesirable.

Consider, for example, the burden of Kitchen Patrol duty in a typical military unit. Soldiers

dislike cleaning pots and peeling potatoes, but this work must be done, and done well, for the

camp to function. Similarly, in a hospital unit, employees dislike night shifts which someone

must take. Formally, we study a model of dynamic moral hazard in which, in each period, a

manager must select a worker from a group of homogeneous workers to perform a task. In

each period, the selected worker privately chooses whether to exert effort or to shirk; this

action produces a noisy public output, which is either good or bad. Each worker prefers to

rest, i.e., to not be selected. Conditional on being selected, each worker prefers shirking to

exerting effort. Efficiency calls for workers to exert effort whenever selected. The manager

prefers good outputs to bad outputs. Our interest is in examining the manager’s strategy,

which we interpret as a selection rule, that constitutes an efficient equilibrium.

In our model, effort incentives are intrinsically dynamic. To motivate effort from a selected

worker, the manager must, in expectation, reward the worker with future rest time and

punish them with reselection. To this end, the manager must resolve the following tension:

longer rest periods for one worker strengthen his incentive to exert effort, yet simultaneously

require selecting other workers more often, thereby undermining their effort incentives.

Our first main result characterizes, for each number of workers, the largest set of parameters

under which an efficient equilibrium exists. This set admits intuitive comparative statics. It

expands as the workers become more patient, output becomes a more informative signal of

effort, the gain from shirking falls, or the benefit from resting increases. It also expands as

the number of workers increases: utilizing more workers allows the manager to reward each

worker with longer expected rest time and strengthen effort incentives.
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In proving this result, we address an open problem in the literature on repeated principal-

agent models without transfers when there are more than two agents. In the case of only

two workers, the set of efficient perfect public equilibrium (PPE) payoffs of the workers is an

interval. Consequently, extreme payoffs in the set corresponding to rewards and punishments

are readily identified, facilitating the characterization of the largest set of parameters attaining

efficiency in equilibrium. With more than two workers, this approach does not apply because

the topological structure of the efficient equilibrium payoff set is not well understood (see,

e.g., De Clippel, Eliaz, Fershtman and Rozen, 2021). Our analysis offers an approach

that circumvents this issue: we simultaneously solve for the boundary of the largest set of

parameters attaining equilibrium efficiency as well as necessary conditions on the efficient

PPE payoff vectors when parameters lie on the boundary. The boundary then pins down the

largest set of parameters attaining equilibrium efficiency.

Our second main result presents an equilibrium that is efficient whenever some efficient

equilibrium exists, namely whenever the parameters lie in the set characterized in our first

main result. In this equilibrium, the manager plays an inertial selection rule: he cyclically

orders all workers, and a selected worker continues to be selected until he produces a good

output, after which the manager randomizes between reselecting him and selecting the next

worker in the order. It is inertial in the sense that the reselection probability is set to be

as high as the worker’s effort incentives permit. Consequently, the largest set of parameters

under which an efficient equilibrium exists is the set of parameters under which inertial

rotation constitutes an efficient equilibrium.

Intuitively, this equilibrium sustains the strongest possible effort incentives for all workers

by maximally separating the reward for success and the penalty for failure, subject to efficiency.

When a worker is selected, he receives the lowest continuation payoff attainable in any efficient

equilibrium: a bad output leads to immediate reselection, while a good output results in rest

with a probability set so low that the worker’s effort constraint binds. Conversely, conditional

on being granted rest right after delivering good performance, the worker receives the highest

continuation payoff attainable in any efficient equilibrium. Any alternative equilibrium play

promising this worker an even higher payoff would necessarily require granting more rest

time, which would inevitably force a reduction in some other worker’s rest, thereby weakening

this latter worker’s effort incentives. This alternative therefore falls short of efficiency over a
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range of parameters where efficiency is attainable through inertial rotation in equilibrium.

We examine two extensions. First, we consider a version of our model where the task is

desirable. Here, workers prefer to be selected, although they retain an incentive to shirk once

selected. For instance, a worker prefers to be chosen for an expatriate position in a desirable

city or country; once assigned, this worker is tempted to cut corners because effort is costly.

The manager’s challenge is then to use selection as a reward while preventing selected workers

from coasting. Through analogous arguments, we derive the largest set of parameters given

which an efficient equilibrium exists, and that this set is the set of parameters under which

inertial rotation constitutes an efficient equilibrium. The key distinction from our baseline

model is that inertia in this case arises from maximizing reward rather than punishment.

We next consider a setting where the manager must select a team consisting of multiple

workers in each period. We show that our results extend naturally in both cases of desirable

and undesirable tasks. This extension introduces an additional challenge that the number of

available resting spots may be smaller than the team size. We show that in this event, to

maximize effort incentives for all team members, the manager ensures that, conditional on some

team member being selected to rest after a good (for an undesirable task) or bad (for a desirable

task) output, every team member is selected to rest with equal probability. This contrasts with

Winter’s (2004) famous finding in moral-hazard-in-team problems where optimal incentive

mechanisms assign nonsymmetric rewards even when agents are homogeneous.

Our results offer a complementary perspective on the widespread practice of work shifts

or rotations rather than assigning one fixed person to perform specific tasks in organizations.

While the conventional wisdom that work shifts signal fairness among workers and in turn

improve their job satisfaction,1 our results suggest that such work shifts can be designed in a

way that improve effort incentives. To fix ideas, consider time-based, fixed-term shifts that

are easily implementable in practice. Our model suggests that such fixed shifts are often

inefficient because a worker who just failed is still immediately relieved, which weakens the

punishment for underperformance in the case of undesirable tasks and weakens the reward

for good performance in the case of desirable tasks. Our results therefore shed light on why

certain high-stakes operations, such as in control rooms or trading floors, might bypass strict

time-based schedules in favor of performance-based rotations.

1See, e.g., Knauth and Hornberger (2003) and McHugh, Farley and Rivera (2020).
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The idea that nonmonetary instruments help improve worker performance is not new;

our contribution is to introduce and study worker selection as one such instrument.2 Our

paper therefore contributes primarily to the literature on dynamic allocation relationships

between a principal and many workers. The closest paper is De Clippel et al. (2021), who

study dynamic adverse selection without transfers. In their model, workers have private types

and take observable actions, whereas in ours workers have no private types and choose hidden

actions. In the case of two workers, they characterize a selection rule that attains efficiency

whenever some rule can.3 With more workers, they study a specific class of selection rules

that achieves efficiency only for some parameters. Because these rules require symmetric

treatment of currently unselected workers, they fall short of efficiency in cases where inertial

rotation can achieve it in our model. To our knowledge, this paper is the first to characterize

the full set of parameters enabling efficiency and derive efficient allocation dynamics when

there are more than two workers and no transfers, offering an approach to circumvent an

unaddressed challenge as described above.

Board (2011) and Andrews and Barron (2016) study dynamic allocation relationships

between a principal and multiple workers subject to moral hazard in the presence of monetary

transfers. In their settings, allocation dynamics are shaped by transfers, whereas in our model

they arise solely from the need to provide dynamic incentives because transfers are absent.

As a result, their dynamics differ fundamentally from ours. In Board (2011), the dynamics

are driven by the principal’s varying costs of investing in different workers over time, which

causes the principal to have an insider bias to invest in previously invested workers even

when their costs exceed others. In our model, the reselection inertia can be interpreted as an

outsider bias in the case of undesirable tasks and an insider bias in the case of desirable tasks,

but they emerge from pure moral hazard concerns. In Andrews and Barron (2016), dynamics

are driven by the workers’ varying idiosyncratic productivities, leading the principal to select

2Most existing work focuses on incentive instruments for a single worker, unlike us. Examples include
delegation (Li, Matouschek and Powell, 2017; Lipnowski and Ramos, 2020), managerial attention (Halac and
Prat, 2016), feedback design (Fong and Li, 2016; Ely, Georgiadis and Rayo, 2025), public ratings (Ekmekci,
2011; Hörner and Lambert, 2021; Vong, 2025b) and mediation (Vong, 2025a).

3This is also related to Athey and Bagwell (2001), who study how two firms with private cost information
sustain first-best collusion in a repeated Bertrand model. Like in our inertial rotation equilibrium in the
two-worker case, they show that the firms achieve the first best by asymmetrically splitting market shares
over time, using these splits as rewards and punishments. They establish sufficient conditions for this to
constitute an equilibrium under some discount factor.
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the worker who most recently produced a good output among the most productive workers

in each period. These dynamics do not apply to our model where all workers are equally

productive, because then a worker who is selected and produces a good output would then

always be selected, disrupting effort incentives.

2 Model

Time t = 0, 1, . . . is discrete and horizon is infinite. There is a manager and a set of

homogeneous workers N := {1, . . . , n}, where n ≥ 1.

In each period t, the manager selects one of the workers.4 The workers observe whom

among them is selected. The selected worker privately chooses whether to exert effort or

to shirk. Effort yields a good output ȳ with probability p ∈ (0, 1) and a bad output
¯
y

otherwise, whereas shirking yields a good output ȳ with probability q ∈ (0, p) and a bad

output otherwise. This output is publicly observable. Unselected workers have no moves.

Period t + 1 then unfolds.

In each period, each unselected worker receives payoff r > 0, capturing his gain from

resting. The selected worker gets payoff normalized to zero if he exerts effort and payoff s > 0

if he shirks. Therefore, workers dislike being selected and upon being selected, they prefer

shirking to exerting effort.5 A priori, we impose no restriction on each worker’s preference

between resting and shirking.6 On the other hand, we assume v(ȳ) > v(
¯
y), so that the

manager prefers good outputs to bad outputs. We also assume

pv(ȳ) + (1 − p)v(
¯
y) > qv(ȳ) + (1 − q)v(

¯
y) + s, (1)

so that effort is efficient.7

A public history in each period t, denoted by ht, is an element in (N × {ȳ,
¯
y})t, consisting

of the identities of the selected workers and their outputs, with h0 := ∅. The manager’s

strategy is a collection f ≡ (ft)∞
t=0, where ft(ht) ∈ ∆(N) specifies a distribution over workers

4This rules out the possibility that the manager selects no worker. This restriction is innocuous for our
results, so long as the manager must select a worker in each period to the extent that efficiency is concerned.

5In Section 7.1, we consider an alternative version of our model where workers prefer to be selected.
6It is nonetheless an implication of our results that r > s is a necessary condition for efficiency.
7It is not important for our results that the manager’s preference over outputs aligns with efficiency.
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from which the currently selected worker is drawn at history ht. Worker i’s strategy is a

collection σi ≡ (σi
t)∞

t=0, where σi
t(ht) ∈ [0, 1] specifies worker i’s probability of exerting effort

in period t conditional on being selected at history ht. This definition of a worker’s history

omits its past private actions; this restriction helps simplify the exposition and is innocuous

for our results, because monitoring has a product structure.8

The manager and the workers share a common discount factor δ ∈ (0, 1).9 To formally

define their payoffs in the repeated game, we specify some additional notation. In each period

t, let bi
t = 1 denote the event that worker i is selected and let bi

t = 0 denote the event that he

is not selected. Let ai
t := {0, 1} denote worker i’s action conditional on being selected so that

ai
t = 1 represents effort and ai

t = 0 represents shirking. Each worker i’s realized payoff is

(1 − δ)
∞∑

t=0
δt
[
bi

t(1 − ai
t)s + (1 − bi

t)r
]

.

Let yt denote the realized output in period t. The manager’s realized payoff is

(1 − δ)
∞∑

t=0
δtv(yt).

The solution concept we use is public perfect equilibrium, henceforth equilibrium. An

equilibrium exists in which the manager selects each worker with equal probability in each

period irrespective of the history of play, and each worker shirks upon being selected. An

equilibrium is efficient if each worker exerts effort whenever he is selected. In an efficient

equilibrium, the manager attains her first-best payoff pv(ȳ) + (1 − p)v(
¯
y). We interpret the

manager’s strategy as a selection rule, and refer to the manager’s strategy in any efficient

equilibrium as an efficient selection rule. Observe that in any equilibrium, only the manager

has observable deviations. Without loss of generality, we assume that following any off-path

history, the manager persistently selects worker 1 who then shirks, and hereafter we omit

mentioning off-path equilibrium behavior for conciseness.

In any efficient equilibrium, for each worker, being selected (and exerting effort) is a
8Fudenberg and Levine (1994) show that in repeated games with imperfect public product-structure

monitoring, the set of sequential equilibrium payoffs and the set of public perfect equilibrium payoffs coincide.
Therefore, to the extent that we are concerned with efficient equilibrium payoff vectors, there is no loss of
generality in restricting attention to public strategies (and using public perfect equilibrium as the solution
concept).

9Our results extend if the manager has a different discount factor.
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punishment that yields a low immediate payoff, while not being selected is a reward that

yields a high immediate payoff. The manager uses these punishments and rewards over time

to provide effort incentives. Her strategy is flexible, and so her selection in each period may

depend on past selections and past outputs in arbitrary ways.

Given any number n of workers, let

Ω(n) := {(p, q, r, s, δ) ∈ (0, 1)2 × R2
++ × (0, 1) : p > q} (2)

be the set of parameters other than n specified above, with typical element ω. Let Ω∗(n) ⊆

Ω(n) be the (largest) set of such parameters given which an efficient equilibrium exists. That

is, if Ω̂(n) is a set of parameters such that an efficient equilibrium exists, then Ω̂(n) ⊆ Ω∗(n).

We close this section with a useful preliminary result concerning each worker’s effort

incentive in any efficient equilibrium. In any equilibrium (σ, f), let

U i
σ,f (ht) := Eσ,f

[
(1 − δ)

∞∑
τ=t

δt−τ
[
bi

τ (1 − ai
τ )s + (1 − bi

τ )r
]∣∣∣∣∣ht

]

denote worker i’s continuation payoff at history ht, where the expectation is taken with

respect to the probability distribution over outcomes induced by (σ, f). Let htiy denote the

public history that is a concatenation of history ht followed by a selection of worker i who

then produces output y. When there is no risk of ambiguity, we write U i
σ,f simply as U i.

Lemma 1. In any efficient equilibrium (σ, f), at any history ht where worker i is selected

with positive probability,

U i(htiȳ) − U i(hti
¯
y) ≥ (1 − δ)s

δ(p − q) . (3)

If the interaction were one-shot, then a selected worker has a strict incentive to shirk. In

our model, effort incentives are dynamic and a selected worker is motivated to exert effort

only if his continuation payoff upon a good output is sufficiently higher than that upon a

bad output. The incentive constraint (3) makes precise that their difference must be at least

the wedge (1 − δ)s/[δ(p − q)]. Naturally, this wedge is lower when the worker has a higher

discount factor δ so that he is more patient, when he has a lower shirking gain s, or when a

high output becomes a stronger signal of effort relative to shirking, i.e., when p − q is higher.
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Lemma 1 implies that if an efficient equilibrium exists, then there are at least two workers.

Indeed, if there were only one worker, then the same worker must be selected in every period.

In any putative efficient equilibrium, at every history, this worker’s continuation payoff upon

producing any output is zero, contradicting (3). Accordingly, hereafter, we assume that there

are at least two workers, i.e., n > 1.

3 Selection rules

In this section, we illustrate some simple selection rules to motivate our main results. As

will be described formally in the later sections, two desirable properties of selection rules are

inertia and rotation. Here, we first illustrate inertia and then turn to rotation.

3.1 Inertia

Suppose for now that there are only two workers. Consider a selection rule in which initially

worker 1 is selected. Then, in each period, the currently selected worker is reselected in

the next period after a bad output, and the other worker is selected in the next period

after a good output. If this selection rule is efficient, then, by writing US as the selected

worker’s continuation payoff and UR as the unselected worker’s continuation payoff in each

period in the corresponding efficient equilibrium,10 the payoffs (US, UR) solve the system of

promise-keeping constraints

US = δ (pUR + (1 − p)US) ,

UR = (1 − δ)r + δ (pUS + (1 − p)UR) .

Writing US and UR as US(p, r, δ) and UR(p, r, δ) to emphasize their dependence on the

parameters, the set of parameters ω under which this selection rule is efficient is the set of

parameters satisfying the incentive constraint (3), namely

UR(p, r, δ) − US(p, r, δ) ≥ (1 − δ)s
δ(p − q) . (4)

10These payoffs are independent of the workers’ labels by symmetry.
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We next consider an alternative selection rule for comparison. This selection rule is the

same as above, except now that if worker i is selected and delivers a good output, there is

inertia: the manager selects the other worker with some probability γ, chosen to be such

that the currently selected worker is indifferent between exerting effort and shirking, and

reselects worker i otherwise. If this selection rule is efficient, then, by writing ÛS as the

selected worker’s continuation payoff and ÛR as the unselected worker’s continuation payoff in

each period in the corresponding efficient equilibrium, the payoffs (ÛS, ÛR) solve the system

of promise-keeping constraints

ÛS = δ(pγÛR + (1 − pγ)ÛS),

ÛR = (1 − δ)r + δ(pγÛS + (1 − pγ)ÛR).

Writing ÛS and ÛR as ÛS(p, r, δ, γ) and ÛR(p, r, δ, γ) to emphasize their dependence on the

parameters and the transition probability γ, the set of parameters under which this selection

rule is efficient is the set of parameters given which there exists γ ∈ [0, 1] satisfying the

binding incentive constraint (3), which captures the selected worker’s indifference, namely

γ(ÛR(p, r, δ, γ) − ÛS(p, r, δ, γ)) = (1 − δ)s
δ(p − q) , for some γ ∈ [0, 1]. (5)

It can be readily verified that the set of parameters ω satisfying (4) is a strict subset of its

counterpart satisfying (5): inertia strictly expands the range of parameters achieving efficiency

in equilibrium. Intuitively, selection is a punishment, and inertia maximally reduces the

worker’s continuation payoff whenever selected to create the harshest punishment compatible

with efficiency: even after a good output, the currently selected worker might be reselected.

This inertia simultaneously and maximally increases the worker’s continuation payoff whenever

he is not selected to create the strongest reward compatible with efficiency: even after the

other worker produces a good output, this worker may remain unselected.

3.2 Rotation

Suppose instead that there are at least three workers. A new problem emerges: when a

currently selected worker produces a good output and is then granted rest, whom should
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the manager pick next among the other workers? The answer to this speaks to rotation. To

illustrate, suppose now that there are exactly three workers.

Suppose that the manager chooses an inertial selection rule with uniform shift. Specifically,

suppose that the manager initially selects worker 1. In each period on path, if worker

i ∈ {1, 2, 3} is selected, then upon a good output, the manager selects a worker different

from i with some probability γ′, chosen to be such that the currently selected worker

is indifferent between exerting effort and shirking, and continues to select worker i with

complementary probability. In the former event, the new worker is drawn uniformly from the

other two workers; upon a bad output from worker i, the manager continues to select worker

i in the next period. If this selection rule is efficient, then by writing Û ′
S as the selected

worker’s continuation payoff and Û ′
R as each unselected worker’s continuation payoff in each

period in the corresponding efficient equilibrium,11 these payoffs (Û ′
S, Û ′

R) solve the system of

promise-keeping constraints

Û ′
S = δ(pγ′Û ′

R + (1 − pγ′)Û ′
S),

Û ′
R = (1 − δ)r + δ

(
p

γ′

2 Û ′
S + p

γ′

2 Û ′
R + (1 − pγ′)Û ′

R

)
.

Writing Û ′
S and Û ′

R as Û ′
S(p, r, δ, γ′) and Û ′

R(p, r, δ, γ′) to emphasize their dependence on

the parameters and the transition probability γ′, the set of parameters ω under which this

selection rule is efficient is the set of parameters given which there exists γ′ ∈ [0, 1] satisfying

the binding incentive constraint (3), namely:

γ′(Û ′
R(p, r, δ, γ′) − Û ′

S(p, r, δ, γ′)) = (1 − δ)s
δ(p − q) , for some γ′ ∈ [0, 1]. (6)

Consider an alternative selection rule featuring rotation for comparison. Again, worker 1

is initially selected. In each period following any history, if worker i ∈ {1, 2, 3} is selected,

then upon a good output, the manager selects worker (i + 1) mod 3 with some probability

γ′′, chosen to be such that the currently selected worker is indifferent between exerting

effort and shirking, and continues to select worker i with the complementary probability;

upon a bad output, the manager reselects worker i. If this selection rule is efficient, then,

11Payoff Û ′
R is the same for the two unselected workers by symmetry.
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writing Û ′′
S as the selected worker’s continuation payoff, Û ′′

R,1 as the continuation payoff of the

unselected worker who would be selected next when the currently selected worker is granted

rest, and Û ′′
R,2 as the remaining unselected worker’s continuation payoff in each period in the

corresponding equilibrium, the payoffs (Û ′′
S , Û ′′

R,1, Û ′′
R,2) solve the system of promise-keeping

constraints

Û ′′
S = δ

(
pγ′′Û ′′

R,2 + (1 − pγ′′)Û ′′
S

)
,

Û ′′
R,2 = (1 − δ)r + δ

(
pγ′′Û ′′

R,1 + (1 − pγ′′)Û ′′
R,2

)
,

Û ′′
R,1 = (1 − δ)r + δ

(
pγ′′Û ′′

S + (1 − pγ′′)Û ′′
R,1

)
.

Again writing Û ′′
S and Û ′′

R,2 as Û ′
S(p, r, δ, γ′′) and Û ′′

R,2(p, r, δ, γ′′) to emphasize their dependence

on the parameters and the transition probability γ′′, the set of parameters under which this

selection rule is efficient is the set of parameters given which there exists γ′′ ∈ [0, 1] satisfying

the binding incentive constraint (3), namely:

γ′′(Û ′′
R,2(p, r, δ, γ′′) − Û ′′

S(p, r, δ, γ′′)) = (1 − δ)s
δ(p − q) , for some γ′′ ∈ [0, 1]. (7)

It can be readily verified that the set of parameters ω satisfying (6) is a strict subset of its

counterpart satisfying (7): rotation strictly outperforms uniform shift in attaining efficiency

in equilibrium. Intuitively, under the uniform selection rule, each resting worker faces a

positive probability of being selected in the next period. This weakens rest as a reward. In

contrast, the inertial rotation rule grants a worker who is just given rest after a good output

a longer rest time in expectation, leading to stronger effort incentives.

Our two main results, presented next, show that the largest set of parameters under

which an efficient equilibrium exists is the set of parameters under which inertial rotation

constitutes an efficient equilibrium.

4 Conditions for efficiency

In this section, we present our first main result, characterizing Ω∗(n), the largest set of

parameters given which an efficient equilibrium exists when there are n workers. Let
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V := (V 1, . . . , V n) denote the (unique) vector solving the system



V 1

V 2

...

V n−1

V n


= (1 − δ)



0

r
...

r

r


+ δ


p



V 2

V 3

...

V n

V 1


+ (1 − p)



V 1

V 2

...

V n−1

V n




. (8)

This system defines (V k)n
k=1 as a linear recurrence that can be solved in closed form, as a

function of (n, p, r, δ). Specifically, by writing V k as V k(n, p, r, δ) to emphasize its dependence

on the parameters for each k, and by writing ξ := (1 − δ(1 − p))/(δp) > 1, it holds that

V 1(n, p, r, δ) = ξn−1 − 1
ξn − 1 r, (9)

V k(n, p, r, δ) =
(

1 − (ξ − 1)ξk−2

ξn − 1

)
r, for k = 2, . . . , n. (10)

Our first main result is:

Proposition 1. Suppose that n > 1. It holds that

Ω∗(n) =
{

ω ∈ Ω(n) : V 2(n, p, r, δ) − V 1(n, p, r, δ) ≥ (1 − δ)s
δ(p − q)

}
. (11)

Proposition 1 characterizes Ω∗(n) in terms of the primitives. Because the approach we take

to prove this result is unlike existing work (which mainly concerns the case of two workers), in

the rest of this section, we sketch a proof of Proposition 1 and discuss its intuition, relegating

details to the Appendix. Fix n > 1. Let E ⊆ Rn
+ be the set of equilibrium payoff vectors

of the n workers,12 with typical element U = (U1, . . . , Un) where U i denotes worker i’s

equilibrium payoff. Let E∗ ⊆ E denote the set of efficient equilibrium payoffs (of the workers),

attained by each worker exerting effort whenever selected. Therefore

E∗ =
{

U ∈ E :
n∑

i=1
U i = (n − 1)r

}
, (12)

12We omit the manager’s payoff. In any efficient equilibrium, after any history (on path), the manager’s
continuation payoff is equal to pv(ȳ) + (1 − p)v(

¯
y).
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because at each history, the selected worker achieves payoff 0 by exerting effort while the

remaining n − 1 workers rest and each achieves payoff r in the equilibrium. By standard

arguments, E is compact (see, e.g., Abreu, Pearce and Stacchetti, 1990) and so is E∗. Define

¯
U := min

(U1,...,Un)∈E∗
U1. (13)

This is the lowest payoff that a worker can obtain in any efficient equilibrium. Next, define

Ū (1) := max
(
¯
U,U2,...,Un)∈E∗

U2.

This is the highest payoff that a worker can achieve in any efficient equilibrium conditional

on some other worker achieving
¯
U .

The set of parameters Ω∗(n) supporting efficient equilibria is compact. It is closed, as it

is characterized by the worker’s incentive constraint (3) whenever selected, which is a weak

inequality. It is bounded, as the workers’ continuation payoffs are. Consequently, Ω∗(n)

contains its boundary points. Let bd(Ω∗(n)) denote the boundary of Ω∗(n). We simultaneously

solve for this boundary and properties of efficient equilibria when the parameters lie on this

boundary. The boundary then allows us to characterize Ω∗(n).

Lemma 2 bounds each selected worker’s continuation payoff at any history in any efficient

equilibrium from below:

Lemma 2. In any efficient equilibrium, at any history h, for each selected worker i,

U i(h) ≥ ps

p − q
. (14)

Intuitively, a worker, whenever selected, is willing to exert effort only if he is rewarded

with a positive continuation payoff upon a good output. The right side of (14) is the minimum

such reward in any efficient equilibrium.

Lemma 3 below shows that for parameters lying on the boundary of Ω∗(n), in any efficient

equilibrium, the difference between the lowest worker’s continuation payoff
¯
U and the highest

worker’s continuation payoff Ū (1) conditional on some other worker’s payoff attaining
¯
U is

equal to the wedge identified in the incentive constraint (3). Moreover, they are the only

feasible reward and punishment for each worker.

13



Lemma 3. Fix ω ∈ bd(Ω∗(n)). It holds that

Ū (1) −
¯
U = (1 − δ)s

δ(p − q) . (15)

In any efficient equilibrium, for each i = 1, . . . , n, at each history on path where worker

i is selected, upon producing a good output, his continuation payoff is equal to Ū (1); upon

producing a bad output, his continuation payoff is
¯
U .

Intuitively, because ω ∈ bd(Ω∗(n)), in any efficient equilibrium, the moral hazard problem

is so severe that each selected worker is willing to exert effort only because he receives

the highest possible continuation payoff Ū (1) upon a good output and receives the lowest

counterpart
¯
U upon a bad output, and even then, this worker is only indifferent between

exerting effort and shirking. This observation and the incentive constraint (3) lead to (15).

Lemma 4 next shows that for parameters lying on the boundary of Ω∗(n), in any efficient

equilibrium, the worker’s continuation payoff is equal to
¯
U whenever selected.

Lemma 4. Fix ω ∈ bd(Ω∗(n)). In any efficient equilibrium, for each i = 1, . . . , n, at each

history h where worker i is selected, his continuation payoff U i(hi) is equal to
¯
U .

By Lemma 2, each worker’s lowest continuation payoff
¯
U in any efficient equilibrium is at

least ps/(p − q). At the same time, because the parameters lie on the boundary of Ω∗(n),
¯
U

cannot be strictly higher than ps/(p − q), for otherwise a currently selected worker attaining

continuation payoff
¯
U would have a strict incentive to exert effort, contradicting (15).

Next, given
¯
U and Ū (1), define, by iteration on k = 2, . . . , n − 2,

Ū (k) := max
(
¯
U,Ū(1),···Ū(k−1),Un−k−1,...,Un)∈E∗

Un−k−1.

This is the best payoff a worker can achieve in any efficient equilibrium conditional on there

being k other workers achieving payoffs
¯
U, Ū (1), . . . Ū (k−1). Finally, define

Ū (n−1) := (n − 1)r −
n−2∑
k=1

Ū (k) −
¯
U.

This is the only payoff a worker could get in any efficient equilibrium conditional on the other

workers achieving
¯
U, Ū (1), . . . , and Ū (n−2) by (12).

14



By construction, the payoff vector U := (
¯
U, Ū (1), . . . , Ū (n−1)) lies in E∗. Lemma 5 shows

that this payoff vector is decomposed (in the sense of Abreu et al., 1990) by worker 1 being

selected and exerting effort alongside the continuation payoff vector U ′ := (Ū (1), . . . , Ū (n−1),
¯
U)

upon a good output and the payoff vector U upon a bad output. By symmetry across the

workers, the payoff vector U ′ also lies in E∗.

Lemma 5. Fix ω ∈ bd(Ω∗(n)). It holds that


¯
U

Ū (1)

...

Ū (n−1)


= (1 − δ)



0

r
...

r


+ δ


p



Ū (1)

Ū (2)

...

¯
U


+ (1 − p)


¯
U

Ū (1)

...

Ū (n−1)




. (16)

Moreover, (
¯
U, Ū (1), . . . Ū (n−1)) = V , where V is given by (9) and (10).

The first row in (16)—namely,
¯
U = δ(pŪ (1) + (1 − p)

¯
U)—follows from Lemma 3 and

Lemma 4: the payoff vector U is necessarily decomposed by worker 1 being selected and

exerting effort (and the other workers getting to rest) alongside some efficient continuation

payoff vector w(ȳ) upon a good output and some efficient continuation payoff vector w(
¯
y)

upon a bad output, such that worker 1’s payoff in w(ȳ) is equal to Ū (1) and his payoff in w(
¯
y)

is equal to
¯
U . Next, in the payoff vector U , for worker 2’s payoff to attain Ū (1), his payoff

in w(ȳ) must be at least Ū (2) because U ′ ∈ E∗ and worker 1’s payoff in U ′ is Ū (1). Because

the highest payoff worker 2 can obtain in w(ȳ) is Ū (2) given that worker 1’s payoff in w(ȳ) is

Ū (1), worker 2’s payoff in w(ȳ) is precisely Ū (2). Similarly, worker 2’s payoff in w(
¯
y) must

be at least Ū (1) because U ∈ E∗ and worker 1’s payoff in U is
¯
U . Consequently, the second

row in (16) follows—namely, Ū (1) = (1 − δ)r + δ(pŪ (2) + (1 − p)Ū (1)). The other rows in (16)

follow analogously by iteration. Finally, to see that (
¯
U, Ū (1), . . . Ū (n−1)) = V , note that the

payoff vector V given by (9) and (10) is a unique solution to the system (16). Moreover, (16)

coincides with (8) and V , by definition, uniquely solves (8).

Lemma 5 implies that in the worker’s incentive constraint (15) for effort whenever selected

on path, Ū (1) = V 2(n, p, r, δ) and
¯
U = V 1(n, p, r, δ). Therefore

bd(Ω∗(n)) =
{

ω ∈ Ω(n) : V 2(n, p, r, δ) − V 1(n, p, r, δ) = (1 − δ)s
δ(p − q)

}
.
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Consequently, the set Ω∗(n) is characterized as in (11), and so Proposition 1 follows.

A notable implication of Lemma 5 is that a selection rule in which the manager selects one

of the currently unselected workers with equal probability whenever the currently selected

worker produces a good output and is granted rest, such as in De Clippel et al. (2021), fails

to sustain an efficient equilibrium for parameters sufficiently close to the boundary of Ω∗(n),

because it gives all unselected workers an identical continuation payoff. This generalizes the

discussion at the end of Section 3.

5 Inertial rotation

In this section, we present our second main result, constructing explicitly an efficient equilib-

rium for each ω ∈ Ω∗(n). We first introduce a definition and some essential notations.

Definition 1 (Rotation). For any α ∈ [0, 1], a selection rule is said to be an α-rotating

selection rule if it satisfies the following property: in each period, if worker k = 1, . . . , n is

selected, then upon a good output from this worker, the manager selects worker (k + 1) mod n

with probability α and continues to select worker k with complementary probability in the next

period; upon a bad output instead, the manager continues to select worker k. An α-rotating

selection rule is said to be inertial rotation if α < 1.

Intuitively, given a rotating selection rule, the manager cyclically orders the workers.

A selected worker remains selected until he delivers a good performance, upon which the

manager, with some probability, selects the next worker in the order. Note that for any

α, there are multiple α-rotating selection rules, because the initial worker is not uniquely

identified. Figure 1 illustrates one such rule in which worker 1 is initially selected.

Proposition 2. Fix n > 1. For any ω ∈ Ω∗(n), there is an efficient equilibrium in which the

manager plays an α∗-rotating selection rule for some α∗ ≡ α∗(n, ω) ∈ (0, 1] and each worker

is indifferent between exerting effort and shirking whenever selected.

The intuition is as follows. For any ω ∈ Ω∗(n), if the inequality in (11) binds, then

ω ∈ bd(Ω∗(n)). Given such ω, each worker must be indifferent between exerting effort and

shirking under a 1-rotating selection rule whenever he is selected in any efficient equilibrium.
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1 2 · · · n − 1 n
ȳ, and w.p. α

otherwise otherwise

ȳ, and w.p. α

otherwise

ȳ, and w.p. α

otherwise

Figure 1: α-rotating selection rule with worker 1 being selected first

If the inequality in (11) holds strictly instead, then there exists a positive probability α∗(n, ω)

of each worker receiving a reward upon a good output that is so low that keeps him indifferent

between exerting effort and shirking whenever selected under the α∗(n, ω)-rotating selection

rule in any efficient equilibrium. Any such selection rule is therefore efficient. The binding

incentive constraint minimizes the continuation payoff of a worker upon producing a bad

output subject to efficiency. An α-rotating selection rule, where α minimizes worker transitions

without disrupting effort incentives, maximizes the continuation payoff of a worker upon

producing a good output when selected and then being allowed to rest, again subject to

efficiency. If the selection rule is that such a worker is rewarded more expected rest time

than inertial rotation does, then some other worker must be rewarded less expected rest

time than rotation does when the former worker is at rest, undermining the latter worker’s

effort incentives. There is then a range of parameters over which efficiency fails under this

alternative selection rule but is attainable by inertial selection.

It is worth remarking that idiosyncrasies, such as workers facing idiosyncratic opportunity

costs to exert effort, can be incorporated without affecting our results. Specifically, suppose

that in each period, each worker i has a private shirking gain si that is independently drawn

across time and workers from a distribution Gi on a nondegenerate compact interval [0, s̄].

Suppose that efficiency continues to require that a worker exerts effort whenever selected,

namely (1) holds with s replaced by s̄. Our two main results, Proposition 1 and Proposition 2,

readily extend, with s replaced by s̄ in (11). If an efficient equilibrium exists, then at every

history, the selected worker must have a best reply to exert effort even if his private shirking

gain attains s̄.
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6 Comparative statics

In this section, we discuss the comparative statics concerning the set Ω∗(n).

Corollary 1. For each n > 1, the left side of (11) is strictly increasing in p, r, and δ, and is

strictly decreasing in q and s. Moreover, the set Ω∗(n) is strictly increasing in n and satisfies

lim
n→∞

Ω∗(n) =
{

(p, q, r, s, δ) ∈ Ω(n) : r − ps

p − q
≥ 0

}
. (17)

For any number of workers n > 1, by Proposition 2, any α∗(n, ω)-rotating selection rule

is efficient whenever some rule is. Consequently, Ω∗(n) is equal to the set of parameters in

Ω(n) under which some α∗(n, ω)-rotating selection rule constitutes an efficient equilibrium.

Naturally, effort incentives are stronger under any α∗(n, ω)-rotating selection rule when

outputs are less noisy—namely, when p is higher or q is lower—the gain r from resting is

higher, the workers have a higher discount factor δ, or the gain from shirking s is lower. Next,

under any α∗(n, ω)-rotating selection rule, all workers are selected on path. Therefore, given a

larger set of workers, each worker’s expected rest time conditional on not being selected today

is higher. This in turn strengthens effort incentives, leading to a larger range of parameters

under which any α∗(n, ω)-rotating selection rule is efficient. Moreover,

lim
n→∞

V 1(n, p, r, δ) = 1
ξ

r, (18)

and lim
n→∞

V 2(n, p, r, δ) = r, (19)

resulting in (17). Intuitively, for any ω on the boundary of Ω∗(n), α∗(n, ω) = 1. Consequently,

the fraction 1/ξ = (δp)/(1 − δ(1 − p)) is the discounted frequency of a worker being allowed

to rest conditional on him being currently selected, giving (18). Further, when there are

infinitely many workers, the discounted frequency of a worker being allowed to rest conditional

on him currently taking a rest is 1, giving (19).

7 Extensions

In this section, we discuss two extensions of our baseline model.
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7.1 Desirable tasks

In this section, we consider a different version of our model where workers prefer to be

selected. Suppose instead that in each period, the unselected worker gets payoff normalized

to r < 0. Here, unlike in our main model, in any efficient equilibrium, being selected (and

exerting effort) constitutes a reward whereas being rested is a punishment.

Our analysis above extends, with analogous arguments and minimal modification. Slightly

abusing notations, let V := (V 1, . . . , V n) denote the (unique) vector solving the system



V 1

V 2

...

V n−1

V n


= (1 − δ)



0

r
...

r

r


+ δ


p



V 1

V 2

...

V n−1

V n


+ (1 − p)



V 2

V 3

...

V n

V 1




. (20)

Like (8), the system (20) defines (V k)n
k=1 as a linear recurrence that can be solved in closed

form, as a function of n, p, r, and δ. Specifically, by writing V k as V k(n, p, r, δ) to emphasize

its dependence on the parameters for each k, (9) and (10) hold, but now ξ is given instead

by ξ := (1 − δp)/(δ(1 − p)) > 1.

Our two main results extend, summarized below in Proposition 3.

Proposition 3. Suppose that n > 1. It holds that

Ω∗(n) =
{

ω ∈ Ω(n) : V 1(n, p, r, δ) − V 2(n, p, r, δ) ≥ (1 − δ)s
δ(p − q)

}
. (21)

For any ω ∈ Ω∗(n), there is an efficient equilibrium in which the manager plays an α∗-rotating

selection rule for some α∗ ≡ α∗(n, ω) ∈ (0, 1] and each worker is indifferent between exerting

effort and shirking whenever selected.

We omit the proof because all arguments are analogous. The only difference is that,

unlike in (11), in (21) the payoff V 1 captures each worker’s highest continuation payoff in

any efficient equilibrium whereas V 2 captures the lowest counterpart.

19



7.2 Selecting teams

In this section, we examine a setting where in each period the manager must select K ∈

{1, . . . , n} workers. We refer to this subset of selected workers as a team. Once this team is

selected, all workers in this team simultaneously and independently choose whether to exert

effort or to shirk. If k of them exert effort, then a good output is realized with probability

pk ∈ (0, 1) and a bad output is realized with complementary probability, where pk is assumed

to be strictly increasing in k. The model is otherwise unchanged. To facilitate a comparison

with our main model, we write pK as p and pK−1 as q. As in our main model, if an efficient

equilibrium exists, then the number of workers n must be strictly higher than the team size

K. Accordingly, we assume that K < n. Let Ω∗(n, K) denote the set of parameters in Ω(n)

under which an efficient equilibrium exists given n workers and given that K workers must

be selected in each period.

For concreteness, we assume as in our baseline model that r > 0, so that workers prefer

to rest. The arguments can be readily adopted to examine the case r < 0 where workers

dislike being rested as in Section 7.1; We omit this latter case to avoid repetition.

We first generalize Proposition 1 and characterize the set Ω∗(n, K) for each n > K and

K ≥ 1. Again slightly abusing notations, let V := (V 0, . . . , V 0, V 1, . . . , V n−K) be the unique

solution to the system



V 0

...

V 0

V 1

...

V n−K


= (1 − δ)



0
...

0

r
...

r


+ δ


p



∑min(K,n−K)
i=1

1
K

V i + (2K−n)+

K
V 0

...∑min(K,n−K)
i=1

1
K

V i + (2K−n)+

K
V 0

1{K+1>n−K+1}V
K+1 + 1{K+1≤n−K+1}V

0

...

1{K+n−1>n−K+1}V
K+n−1 + 1{K+n−1≤n−K+1}V

0


+ (1 − p)



V 0

...

V 0

V 1

...

V n−K




,

(22)

where x+ ≡ max(x, 0) for any x ∈ R. Given V , we sometimes write V i as V i(n, K, p, r, δ) for

each i = 0, . . . , n − K to emphasize its dependence on the parameters.

Proposition 4 generalizes Proposition 1:

20



Proposition 4. Fix K ≥ 1 and n > K. It holds that

Ω∗(n, K) =
{

ω ∈ Ω(n) :
min(K,n−K)∑

i=1

1
K

V i(n, K, p, r, δ)

+ (2K − n)+

K
V 0(n, K, p, r, δ) − V 0(n, K, p, r, δ) ≥ (1 − δ)s

δ(p − q)

}
.

(23)

The intuition for Proposition 4 is identical to that of Proposition 1, with one new subtlety.

If the number of workers is divisible by the team size K, then our earlier analysis extends in a

straightforward manner: the manager partitions the set of workers into teams with equal size

and treats each team as a “single worker” as in our main analysis. If the number of workers

is not divisible by the team size K, then there are histories on path where a current team of

workers produce a good output but not all of them can be rewarded with rest at the same

time. In this case, if the parameters belong to the boundary of Ω∗(n, K), then the workers

must be rewarded with equal probabilities to maximize every worker’s effort incentives.

To illustrate, consider an example in which five workers are present and in each period,

the manager selects two workers, i.e., n = 5 and K = 2. The system (22) reduces to



V 0

V 0

V 1

V 2

V 3


= (1 − δ)



0

r
...

r

r


+ δ


p



1
2V 1 + 1

2V 2

1
2V 1 + 1

2V 2

V 3

V 0

V 0


+ (1 − p)



V 0

V 0

V 1

V 2

V 3




. (24)

The inequality in (23) reduces to

1
2V 1(5, 2, p, r, δ) + 1

2V 2(5, 2, p, r, δ) − V 0(5, 2, p, r, δ) ≥ (1 − δ)s
δ(p − q) . (25)

As in our main model, (V 0, V 0, V 1, V 2, V 3) is a payoff vector in the efficient equilibrium if

ω ∈ bd(Ω∗(5, 2)), where workers 1 and 2 are currently selected to work. Moreover, when

they produce a good output, both must be rewarded the highest possible continuation payoff

conditional on two workers being selected; this highest payoff is given by 1
2V 1 + 1

2V 2 in (24).

When they produce a bad output, both are punished with the lowest possible continuation
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payoff conditional on two workers being selected, namely V 0 in (24).

Finally, we generalize Proposition 2, constructing an efficient equilibrium for each K ≥ 1,

n > K, and ω ∈ Ω∗(n, K). To this end, we first generalize Definition 1.

Definition 2 (inertial team rotation). For any α ∈ [0, 1], a selection rule is said to be an

α-rotating team selection rule if it satisfies the following property. In each period, the workers

are labeled w1, w2, . . . , wn. Workers w1 to wK are selected. Following a good output, with

probability α, the manager assigns labels w(k+1)mod n, . . . , w(k+K)mod n with equal probabilities

among these workers and assigns label wk+Kmod n to worker wk for each k > K; with

complementary probability, the labels are unchanged. Following a bad output, the labels are

also unchanged. An α-rotating team selection rule is said to be inertial rotation if α < 1.

Proposition 5 generalizes Proposition 2, with analogous intuition: the rotation among

teams are chosen to be as inertial as possible, keeping each worker indifferent between exerting

effort and shirking.

Proposition 5. Fix n > K. For any ω ∈ Ω∗(n, K), there is an efficient equilibrium in which

the manager plays an α∗-rotating team selection rule for some α∗ ≡ α∗(n, K, ω) ∈ (0, 1] and

each worker is indifferent between exerting effort and shirking whenever selected.

Therefore, the largest set of parameters given which an efficient equilibrium exists is the

set of parameters given which an inertial rotating selection rule is efficient.

8 Concluding remarks

In this paper, we have studied the incentive role of allocating tasks among a group of workers

over time. For any group size, we have characterized the largest set of parameters under

which efficiency can be sustained in equilibrium and have identified a class of selection rules

that achieve efficiency whenever some selection can do so. These rules rotate the worker

to be selected in a cyclic order and are maximally inertial: a currently selected worker is

reselected with a probability as high as effort incentives allow.

From a technical perspective, although we have developed an approach that enables a

systematic analysis of dynamic allocation problems without transfers when there are more
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than two workers and when more than one worker must be selected in each period, the

tractability of our approach relies on ex ante symmetry among workers. Moreover, our

model does not entertain the possibility that the manager’s information about the workers is

incomplete, in which case equilibrium payoffs no longer admit a recursive structure and a

different approach is required. We leave these issues for future research.
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A Proofs

A.1 Proof of Lemma 1

In any efficient equilibrium σ, at any history ht where worker i is selected with positive

probability, worker i’s payoff by exerting effort is given by

U i
σ,f (hti) = (1 − δ) × 0 +

(
pU i

σ,f (htiȳ) + (1 − p)U i
σ,f (hti

¯
y)
)

.

By deviating to shirk, worker i’s continuation payoff is

Û i
σ,f (hti) = (1 − δ) × s +

(
qU i

σ,f (htiȳ) + (1 − q)U i
σ,f (hti

¯
y)
)

.

The one-shot deviation principle requires that U i
σ,f (hti) − Û i

σ,f (hti) ≥ 0, or equivalently,

U i
σ,f (htiȳ) − U i

σ,f (hti
¯
y) ≥ (1 − δ)s

δ(p − q) ,

as was to be shown.

A.2 Proof of Lemma 2

Define

¯
U := min

(U1,...,Un)∈E∗
U1.

By Lemma 1, in the equilibrium (σ, f), at history h, the selected worker i’s incentive constraint

for effort holds:

U i
σ,f (hiȳ) − U i

σ,f (hi
¯
y) ≥ (1 − δ)s

δ(p − q) . (26)
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Therefore

U i
σ,f (h) = δ(pU i

σ,f (hiȳ) + (1 − p)U i
σ,f (hi

¯
y))

≥ δ

(
U i

σ,f (hi
¯
y) + (1 − δ)ps

δ(p − q)

)

≥ δ
¯
U + (1 − δ)ps

(p − q) .

Because σ, h, and i are arbitrarily picked, the above inequality holds when they are picked

such that U i
σ,f (h) attains

¯
U , giving

¯
U ≥ δ

¯
U + (1 − δ)ps

(p − q) .

Rearranging gives

¯
U ≥ ps

(p − q) . (27)

Consequently,

U i
σ,f (h) ≥

¯
U ≥ ps

(p − q) ,

as was to be shown.

A.3 Proof of Lemma 3

By Lemma 1, in the equilibrium (σ, f), at history h, upon worker i being selected, by

Lemma 2,

U i
σ,f (hi

¯
y) ≥

¯
U ≥ ps

(p − q) . (28)

Next, at any history h′ in the equilibrium, because there must be one worker who is selected

and then exerts effort, U i
σ,f (h′) ≤ Ū (1). Consequently,

U i
σ,f (hiȳ) ≤ Ū (1). (29)
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Note that (26), (42), and (29) together imply

Ū (1) −
¯
U ≥ (1 − δ)s

δ(p − q) . (30)

To complete the proof, it suffices to show that this inequality cannot be strict. If it were

strict, then by continuity in ω on both sides of (44), there exists an open ball Bω containing ω

such that an efficient selection rule exists given each ω′ ∈ Bω, contradicting that ω ∈ bd(Ω∗).

A.4 Proof of Lemma 4

In the equilibrium, at history h, the selected worker i’s continuation payoff U i
σ,f(hi) must

then be equal to

δ(pŪ (1) + (1 − p)
¯
U). (31)

If U i
σ,f (hiȳ) < Ū (1), then his incentive constraint to exert effort fails:

U i
σ,f (hiȳ) − U i

σ,f (hi
¯
y) < Ū (1) − U i

σ,f (hi
¯
y)

≤ Ū (1) −
¯
U

= (1 − δ)s
δ(p − q) ,

where the last line uses (15). Therefore, (31) and (15) together imply that

U i
σ,f (hi) = (1 − δ) ps

p − q
+ δ

¯
U (32)

Because U i
σ,f (hi) ≥

¯
U by definition of

¯
U ,

(1 − δ) ps

p − q
+ δ

¯
U ≥

¯
U.

Rearranging,

¯
U ≤ ps

p − q
. (33)
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This and (27) together imply that

¯
U = ps

p − q
. (34)

Consequently, by (47),

U i
σ,f (hi) = (1 − δ) ps

p − q
+ δ

ps

p − q
= ps

p − q
=

¯
U.

Therefore

¯
U = δ[pŪ (1) + (1 − p)

¯
U ]. (35)

A.5 Proof of Lemma 5

Define

w(y) :=


U ′, if y = ȳ,

U, if y =
¯
y.

To prove the lemma, we must show that

U = (1 − δ)(0, r, . . . , r) + δ[pw(ȳ) + (1 − p)w(
¯
y)].

Let P(Rn) denote the set of all subsets of Rn. Let B : P(Rn) → P(Rn) denote the

generating function (Abreu et al., 1990) so that any set W ⊆ Rn is said to be self-generating

if W ⊆ B(W ). For an efficient equilibrium to exists, the set of efficient equilibrium payoffs

E∗
f must be self-generating, and therefore U ∈ B(E∗

f ).

For any w̃ that decomposes U , given that the current selected worker 1 exerts effort, it must

hold that w̃1(ȳ) = U (1) and w̃1(
¯
y) =

¯
U by (35). Moreover, (

¯
U, Ū (1), . . . , Ū (n−1)) ∈ E∗

f because

of symmetry and because U ∈ E∗
f . Therefore, there exists some Û = (

¯
U, Û2, . . . , Ûn) ∈ E∗

f

that is decomposed by the selected worker 1 exerting effort and continuation value w. By
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definition of Ū (1),

Ū (1) > Û2. (36)

Suppose that there exists a function w′ : {ȳ,
¯
y} → E∗

f that decomposes U , given which

w′
2(ȳ) ̸= Ū (2) or w′

2(¯
y) ̸= Ū (1). Then

Ū (1) = (1 − δ)r + δ[pw′
2(ȳ) + (1 − p)w′

2(¯
y)]

< (1 − δ)r + δ[pŪ (2) + (1 − p)Ū (1)]

= (1 − δ)r + δ[pw2(ȳ) + (1 − p)w2(ȳ)] = Û2,

contradicting (36). Then, by induction, for each k = 1, . . . , n − 2, it holds that

Ū (k) = (1 − δ)r + δ[pŪ (k+1) + (1 − p)Ū (k)], for each k = 1, . . . , n − 2.

Finally, because w(ȳ), w(
¯
y) ∈ E∗

f , it follows that

Ū (n−1) = (1 − δ)r + δ[p
¯
U + (1 − p)Ū (n−1)].

Consequently, (16) holds, as was to be shown.

A.6 Proof of Proposition 2

For any α ∈ (0, 1], consider a strategy profile where the manager plays some α-rotating

selection rule and the worker exerts effort whenever selected. Under this strategy profile,

following any history, let US ≡ US(n, p, r, δ, α) denote a worker’s continuation payoff upon

being selected and for each k = 0, . . . , n − 2, let UR,k ≡ UR,k(n, p, r, δ, α) denote a worker’s

continuation payoff upon being allowed to rest and conditional on there being k other

workers who would be selected before the next time this worker will be selected. The vector
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(US, UR,n−2, . . . , UR,0) is therefore a unique solution to the system



US

UR,n−2
...

UR,1

UR,0


= (1 − δ)



0

r
...

r

r


+ δ


pα



UR,n−2

UR,n−3
...

UR,0

US


+ (1 − pα)



US

UR,n−2
...

UR,1

UR,0




. (37)

Given (16), (37) implies



US(n, p, r, δ, α)

UR,n−2(n, p, r, δ, α)
...

UR,1(n, p, r, δ, α)

UR,0(n, p, r, δ, α)


=



V 1(n, αp, r, δ)

V 2(n, αp, r, δ)
...

V n−1(n, αp, r, δ)

V n(n, αp, r, δ)


.

Moreover,

α(UR,n−2(n, p, r, δ, α) − US(n, p, r, δ, α))
∣∣∣∣∣
α=0

= 0, (38)

α(UR,n−2(n, p, r, δ, α) − US(n, p, r, δ, α))
∣∣∣∣∣
α=1

= V 2(n, p, r, δ) − V 1(n, p, r, δ) ≥ (1 − δ)s
δ(p − q) , (39)

where the inequality uses (11). Also, the expression α(UR,n−2(n, p, r, δ, α) − US(n, p, r, δ, α))

is strictly increasing in α. This is because, by direct computation from (8),

α(UR,n−2(n, p, r, δ, α) − US(n, p, r, δ, α)) =
(1 − δ)r

(
α − 1−δ

δp(( 1−δ
αδp

+1)n
−1)

)
1 − δ(1 − αp) ,

so that its derivative with respect to α is positive if and only if

(αδp + 1 − δ)n > (αδp)n−1(αδp + n(1 − δ)).
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This inequality holds because

(αδp + 1 − δ)n − (αδp)n−1(αδp + n(1 − δ))

=
n∑

k=0

(
n

k

)
(αδp)n−k(1 − δ)k − (αδp)n−1(αδp + n(1 − δ))

= (αδp)n + n(αδp)n−1(1 − δ) +
n∑

k=2

(
n

k

)
(αδp)n−k(1 − δ)k − (αδp)n−1(αδp + n(1 − δ))

=
n∑

k=2

(
n

k

)
(αδp)n−k(1 − δ)k

> 0,

where the second line uses the binomial theorem. Consequently, by (51) and (52), and by

monotonicity of α(UR,n−2(n, p, r, δ, α) − US(n, p, r, δ, α)) in α, there exists α∗ ≡ α∗(n, ω) ∈

(0, 1] such that

α∗(UR,n−2(n, p, r, δ, α∗) − US(α∗(n, p, r, δ, ω))) = (1 − δ)s
δ(p − q) . (40)

It then follows that any α∗(n, ω)-rotating selection rule is efficient: given such selection rule,

an efficient equilibrium exists because each selected worker’s incentive constraint for effort in

this equilibrium is given by (40) and therefore holds.

A.7 Proof of Proposition 4

Define

Ū (1) := max
(
¯
U,...

¯
U,UK+1,...,Un)∈E∗

UK+1.

This is the highest payoff that a worker can achieve in any efficient equilibrium conditional

on K workers achieving
¯
U . Next, by iteration on k = 2, . . . , n − K − 1,

Ū (2) := max
(
¯
U,...

¯
U,Ū(1),...,Ū(k),Un−k−K ,...,Un)∈E∗

Un−k−K .
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This is the best payoff a worker can achieve in any efficient equilibrium conditional on there

being K other workers achieving
¯
U , and also others achieving Ū (1), . . . , Ū (k). Finally, define

Ū (n−K) := (n − K)r − K
¯
U −

n−K−1∑
k=1

U (k).

This is the only payoff a worker could get in any efficient equilibrium conditional on there

being K other workers achieving
¯
U , K achieving Ū (1), K achieving Ū (2),..., and K achieving

Ūm−1. To prove the necessity of (23), we begin by characterizing the boundary of Ω∗(n, K),

the largest set of parameters given which an efficient selection rule exists. We denote this

boundary by bd(Ω∗(n, K)). Fix some ω ∈ bd(Ω∗(n, K)) and an efficient equilibrium (σ, f).

Lemma 6. In this equilibrium, for each i = 1, . . . , n, at each history h where worker i is

selected, it holds that

min(K,n−K)∑
i=1

1
K

Ū (i)(n, K, p, r, δ) + (2K − n)+

K ¯
U −

¯
U = (1 − δ)s

δ(p − q) . (41)

Proof of Lemma 6. By Lemma 1 and Lemma 2, in the equilibrium (σ, f), at history h,

upon worker i being selected,

U i
σ,f (hi

¯
y) ≥

¯
U ≥ ps

(p − q) . (42)

We argue that there is a uniform bound U∗ for each such worker i,

U i
σ,f (hiȳ) ≤ U∗. (43)

Suppose that there exists a worker j who is selected at history h, given which (43) fails. Then,

there exists another worker k who is selected at history h, given which (43) holds strictly. But

then ω /∈ bd(Ω∗(n, K)). This is because the manager, by randomizing the continuation for

worker k and worker j, strictly increases the value of Uk
σ,f (hkȳ) − Uk

σ,f (hj
¯
y), so that efficiency

can be attained for a larger set of parameters. Therefore, by (26), (42), and (43),

Û −
¯
U ≥ (1 − δ)s

δ(p − q) . (44)
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This inequality cannot be strict. If it were strict, then by continuity in ω on both sides of

(44), there exists an open ball Bω containing ω such that an efficient selection rule exists

given each ω′ ∈ Bω, contradicting that ω ∈ bd(Ω∗). Finally, because U i
σ,f(hiȳ) = Û for all

workers i that are selected and ω ∈ bd(Ω∗(n, K)), because there are K workers who are

selected in each period, by definition of Ū (1), Ū (2), . . . ,

U∗ =
min(K,n−K)∑

i=1

1
K

Ū (i)(n, K, p, r, δ) + (2K − n)+

K ¯
U. (45)

This proves (41). ■

Lemma 7. In this equilibrium, for each i = 1, . . . , n, at each history h where worker i is

selected, his continuation payoff U i
σ,f (hi) is equal to

¯
U . At this history, upon producing a good

output, his continuation payoff is equal to (45); upon producing a bad output, his continuation

payoff remains to be
¯
U .

Proof of Lemma 7. By Lemma 6, in the equilibrium, at history h, each selected worker i’s

continuation payoff U i
σ,f (hi) must be equal to

δ(pU∗ + (1 − p)
¯
U). (46)

If U i
σ,f (hiȳ) < U∗, then his incentive constraint to exert effort fails:

U i
σ,f (hiȳ) − U i

σ,f (hi
¯
y) < U∗ − U i

σ,f (hi
¯
y)

≤ U∗ −
¯
U

= (1 − δ)s
δ(p − q) ,

where the last line uses (41). Similarly, if U i
σ,f(hi

¯
y) > U∗, then his incentive constraint to

exert effort also fails. Therefore, (46) and (41) together imply that

U i
σ,f (hi) = (1 − δ) ps

p − q
+ δ

¯
U. (47)
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Because U i
σ,f (hi) ≥

¯
U by definition of

¯
U ,

(1 − δ) ps

p − q
+ δ

¯
U ≥

¯
U.

Rearranging, (33) holds. This and (27) together imply that (34) holds. Thus, by (47),

U i
σ,f (hi) = (1 − δ) ps

p − q
+ δ

ps

p − q

= ps

p − q

=
¯
U.

Therefore

¯
U = δ[pU∗ + (1 − p)

¯
U ], (48)

as was to be shown. ■

The payoff vector U := (
¯
U, . . . ,

¯
U, Ū (1), . . . , Ū (n−K−1)) lies in the set of efficient equilibrium

payoffs E∗. This set E∗ must be self-generating. In particular, Lemma 5 shows that this

payoff vector is decomposed by workers 1 to K being selected and exerting effort alongside

continuation payoffs U ′ := (U∗, . . . , U∗, Ū (K+1), . . . , Ū (n−K−1),
¯
U, . . . ,

¯
U) upon a good output

and U upon a bad output. By symmetry across the workers, U ′ also lies in E∗.
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Lemma 8. For ω ∈ bd(Ω∗(n, K)), it holds that



¯
U
...

¯
U

Ū (1)

...

Ū (n−K)


= (1 − δ)



0
...

0

r
...

r



+ δ


p



∑min(K,n−K)
i=1

1
K

Ū (i) + (2K−n)+

K ¯
U

...∑min(2K,n−K)
i=1

1
K

Ū (i) + (2K−n)+

K ¯
U

1{K+1>n−K+1}Ū
(K+1) + 1{K+1≤n−K+1}¯

U
...

1{K+n−1>n−K+1}Ū
(K+n−1) + 1{K+n−1≤n−K+1}¯

U


+ (1 − p)



¯
U
...

¯
U

Ū (1)

...

Ū (n−K)




.

(49)

Proof of Lemma 8. Define

w(y) :=


U ′, if y = ȳ,

U, if y =
¯
y.

To prove the lemma, we must show that

U = (1 − δ)(0, r, . . . , r) + δ[pw(ȳ) + (1 − p)w(
¯
y)].

Let P(Rn) denote the set of all subsets of Rn. Let B : P(Rn) → P(Rn) denote the

generating function (Abreu et al., 1990) so that any set W ⊆ Rn is said to be self-generating

if W ⊆ B(W ). For an efficient equilibrium to exists, the set of efficient equilibrium payoffs

E∗ must be self-generating, and therefore U ∈ B(E∗). Given that the current selected worker

k = 1, . . . , K exerts effort, it must hold that w̃k(ȳ) = U∗ and w̃1(
¯
y) =

¯
U by (48). For each

worker k > K, by definition of Ū (k), wk(ȳ) = 1{K+1>n−K+1}Ū
(K+1) + 1{K+1≤n−K+1}¯

U and

wk(
¯
y) = Ū (k), for the same reason as in the proof of Lemma 8. Consequently, (49) holds, as

was to be shown. ■
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Lemma 9. It holds that (
¯
U, . . . ,

¯
U, Ū (1), . . . Ū (n−K)) = V , where V solves (22).

Proof. This is because (49) coincides with (22) and the solution to these systems is unique.

■

Finally, for any ω ∈ Ω∗(n, K) and any efficient equilibrium (σ, f), for any history h and

any selected worker i at this history, U i
σ,f(hiȳ) ≤ Ū (1) = V 2(n, p, r, δ) and U i

σ,f(hi
¯
y) ≥

¯
U =

V 1(n, p, r, δ). These inequalities, alongside the fact that the incentive constraint (26) for

effort at each history h for the selected worker must hold in the efficient equilibrium, imply

that (23) necessarily holds, as was to be shown.

It remains to show that (23) is also sufficient for an efficient selection rule to exist.

Lemma 10. Suppose that (23) holds. Then there exists α∗ ≡ α∗(n, K, ω) ∈ (0, 1] such that

any α∗(n, K, ω)-rotating selection rule is efficient.

Proof of Lemma 10. For any α ∈ (0, 1], consider a strategy profile where the manager

plays some generalized α-rotating selection rule and the workers exert effort whenever selected.

Under this rotation rule and the strategy profile, following any history, let US ≡ US(n, p, r, δ, α)

denote a worker’s continuation payoff upon being selected and for each k = 0, . . . , n − 2, let

UR,k ≡ UR,k(n, p, r, δ, α) denote a worker’s continuation payoff upon being allowed to rest and

conditional on there being k other workers who would be selected before the next time this

worker will be selected. The vector (US, UR,n−2, . . . , UR,0) is therefore a unique solution to

35



the system



US

...

US

UR,1
...

UR,n−K


= (1 − δ)



0
...

0

r
...

r



+ δ


pα



∑min(K,n−K)
i=1

1
K

UR,i + (2K−n)+

K
US

...∑min(K,n−K)
i=1

1
K

UR,i + (2K−n)+

K
US

1{K+1>n−K+1}UR,K+1 + 1{K+1≤n−K+1}US

. . .

1{K+n−1>n−K+1}UR,K+n+1 + 1{K+n−1≤n−K+1}US


+ (1 − pα)



US

...

US

UR,1
...

UR,n−K




.

(50)

Given (49), (50) implies



US(n, K, p, r, δ, α)
...

US(n, K, p, r, δ, α)

UR,1(n, K, p, r, δ, α)
...

UR,n−K(n, K, p, r, δ, α)


=



V 0(n, K, αp, r, δ)

. . .

V 0(n, K, αp, r, δ)

V 1(n, K, αp, r, δ)
...

V n−K(n, αp, r, δ)


.

Moreover,

α(UR,n−2(n, K, p, r, δ, α) − US(n, K, p, r, δ, α))
∣∣∣∣∣
α=0

= 0, (51)

α(UR,n−2(n, K, p, r, δ, α) − US(n, K, p, r, δ, α))
∣∣∣∣∣
α=1

=
min(K,n−K)∑

i=1

1
K

V i(n, K, p, r, δ) + (2K − n)+

K
V 0(n, K, p, r, δ) − V 1(n, K, p, r, δ) ≥ (1 − δ)s

δ(p − q) ,

(52)

36



where the inequality uses (11). By continuity of α(UR,n−2(n, K, p, r, δ, α) − US(n, K, p, r, δ, α))

in α, there exists α∗ ≡ α∗(n, K, ω) ∈ (0, 1] such that

α∗(UR,n−2(n, K, p, r, δ, α∗) − US(n, K, p, r, δ, α∗)) = (1 − δ)s
δ(p − q) . (53)

It then follows that any α∗(n, K, ω)-rotating selection rule is efficient: given such selection

rule, an efficient equilibrium exists because each selected worker’s incentive constraint for

effort in this equilibrium is given by (53) and therefore holds. ■
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